
TEXAS INSTRUMENTS

 TEXAS INSTRUMENTS

Process Control Daemon

SOFTWARE HIGH-LEVEL DESIGN DOCUMENT

Document Revision: 0.3

Document Status: Preliminary

Last Updated On: June 1st, 2010

Last Updated By: Hai Shalom

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Contributors to this document:

 Copyright © 2010 Texas Instruments Incorporated - http://www.ti.com/
 Copyright © 2010 Hai Shalom – mailto:hai.shalom@gmail.com

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 2

Revision History

Revision Author Date Comments

0.1 Hai Shalom 10-03-2010 Draft

0.2 Hai Shalom 23-05-2010 Updates after preliminary presentation

0.3 Hai Shalom 01-06-2010 Final version

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 3

TABLE OF CONTENTS
TABLE OF CONTENTS..3
1. Introduction ..5
2. Operating System ..5
3. Process Control Daemon requirements...5
4. Process Control Daemon context ..5
5. Process Control Daemon configuration ...6
5.1. Rules configuration file...6
5.1.1. Inclusion of more rule files...6
5.1.2. Rule Identification ..6
5.1.2.1. Indexed Rule Identification ..6
5.1.3. Start and End conditions ...6
5.1.4. Scheduling ...7
5.1.5. Timeouts ..7
5.1.6. Failure (recovery) actions ..7
5.1.7. Daemon flag ..7
5.1.8. Active flag ..7
5.1.9. Syntax errors and run-time errors handling...7
5.1.10. Configuration file syntax ..8
5.2. Configuration Implementation ..9
5.2.1. Data Storage..9
5.2.2. Parsing...9
5.2.3. Offline Parsing ...9
5.2.3.1. Header file generation ...9
5.2.3.2. Graph file generation ...9
6. Process Control Daemon Core..10
6.1. Initialization ..10
6.1.1. Command line Parameters..10
6.1.1.1. File ...10
6.1.1.2. Print..10
6.1.1.3. Verbose ...10
6.1.1.4. Tick ..10
6.1.1.5. Error log ...10
6.1.1.6. Debug ..10
6.1.2. Scheduling ...10
6.2. Parser module..11
6.3. Rules database module ...11
6.3.1. Rule object...11
6.3.2. Rule states...11
6.3.3. Rules Database storage ..12
6.4. Timer service module...12
6.4.1. Timer service data structure ..13
6.5. Condition Check module..14
6.6. Failure action module...14
6.7. Process module ...15
6.7.1. Process state ...15
6.7.2. Process exit state ..15
6.7.3. Process module data structure..15
6.7.4. Process module start and stop iterations ..15

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 4

6.7.5. Process Parameters ..16
6.7.5.1. Static Parameters ..16
6.7.5.2. Dynamic Parameters ...16
6.7.5.3. Environment Variable Parameters...16
6.8. Exception module...16
6.9. Error logger module ...16
6.10. PCD API module ..16
7. PCD API...17
8. System description...18
9. Use cases ..19
9.1. Creating a process...19
9.2. Creating a Daemon process ..19
9.3. Creating a process with a specified priority ...19
9.4. Creating dependency between processes ..19
9.5. Creating a process in a runtime configurable fashion ...19
9.6. Creating numerous processes of the same executable in a runtime configurable fashion...................19
9.7. Synchronizing processes...19
9.8. Monitoring Processes Resource creation and timeout ..20
9.9. Monitoring Processes and recover from failure ...20
10. Unit tests ..21
10.1. Parser module test ...21
10.2. Rules DB module test ..21
10.3. Condition Check module test ...21
10.4. Failure action module test..21
10.5. Timer module test ..21
10.6. Process module test ..21
10.7. API test...21

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 5

1. Introduction

� The purpose of this document is to specify the software design of the Process Control Daemon,
according to the requirements document.

� The purpose of the Process Control Daemon is to provide a management tool which controls the
system initialization process and monitors resources and processes.

1.1. Glossary

TBD To be defined
API Application Program Interface
OS Operating system
PCD Process Control Daemon
IPC Inter Process Communication

2. Operating System

The Process Control Daemon API and implementation are meant to run under Linux OS.

3. Process Control Daemon requirements

The Process Control Daemon requires the Linux API and IPC library.

4. Process Control Daemon context
The PCD runs on its own context as a user space application. PCD APIs are exported by a header file
and a shared library.

The Process Control Daemon must be initialized before any of its users.

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 6

5. Process Control Daemon configuration

The PCD configuration is done using a textual configuration files.

The Configuration file is loaded and parsed during the PCD's startup.

5.1. Rules configuration file

The PCD Rules configuration file is compatible with the Linux shell script syntax.

The Rules configuration file contains set of rules in blocks, per each application or process which is
required to be started and monitored. For each rule, the user configures a start condition, an end condition
with timeout, an action to perform in case of failure, and scheduling priority of the process.

Per each rule, an application name and parameters is provided.

The same application with different parameters is considered another rule.

The rules configuration file allows inclusion of other rules file(s) in order to allow separation of rules files
according to same target or component.

5.1.1. Inclusion of more rule files
The rules configuration file allows inclusion of other rules file(s) in order to allow separation of rules
files according to same target or component.

5.1.2. Rule Identification
Each rule must be identified by a unique identifier. The identifier is composed of a group name,
followed by an underscore and rule name (e.g. SYSTEM_SYSLOG).

5.1.2.1. Indexed Rule Identification
In case multiple copies of the same process handling are required, an indexed rule can be used to
contain them. An indexed rule has a $ sign in the last rule name character, and must be inactive,
because it is activated by the requesting application only. The PCD will start the indexed rule as
many times as requested, where the first instance will have the $ sign replaced by the index.

5.1.3. Start and End conditions
The PCD can be configured to start a process only if a condition has been satisfied, and complete the
rule only if an end condition has been satisfied within the defined timeout. See Condition check
module section.

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 7

5.1.4. Scheduling
The PCD can be configured to setup the process scheduling (priority). The supported scheduling is
either NICE in the range of -19 to 19, or FIFO in the range of 1 to 99. Note that the latter is designed
to be used by real time high priority processes.

5.1.5. Timeouts
The PCD can be configured to setup timeout for the end condition. The timeout is provided in
milliseconds. In case that no timeout is required (wait forever), the value -1 must be set in the correct
line.

5.1.6. Failure (recovery) actions
The PCD can be configured to perform an action upon a failure. See Failure action module section.

5.1.7. Daemon flag
The user can define the process as a daemon. The PCD handles daemons as processes which can
never exit. If a daemon exists, the PCD will trigger the associated failure action.

5.1.8. Active flag
The user can define if the rule is active or inactive. In case the rule is active, the PCD will enqueue the
rule and will activate it as soon as its start condition will be satisfied. In case the rule is inactive, the
PCD will not activate it, unless requested specifically by an application. This may be used by
applications which need to be started upon a configuration or specific logic.

5.1.9. Syntax errors and run-time errors handling
In case there are syntax errors in the configuration file (i.e. misspelling, missing variables in a block),
the PCD will log this error and abort. There is no error recovery from this situation, due to code space
and also because the final product must have a well defined configuration file.

Run-time errors will be logged and there will be an effort to recover from them (e.g. if a process does
not exist, ignore the rule and continue to the next rule).

The syntax of the PCD scripts can be checked by the host version of the pcdparser utility See offline
parsing section.

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 8

5.1.10. Configuration file syntax

The syntax of the configuration file is as follows:

 # Include a rule file

INCLUDE = filename.pcd

################### Start of a rule block #############################

Index of the rule
RULE = GROUPNAME_RULENAME

Condition to start rule, existence of one of the following

NONE - No start condition, application is spawn immediately
FILE filename - The existence of a file
RULE_COMPLETED id - Rule id completed successfully
NETDEVICE netdev - The existence of a networking device
IPC_OWNER owner - The existence of an IPC destination point
ENV_VAR name, value - Value of a variable

START_COND = { NONE; FILE filename; PNAME pname; RULE_COMPLETED id; NETDEVICE netdev; IPC_OWNER
owner, STATUS script, status }

Command with parameters, NONE for sync point
COMMAND = cmd parameters...

Scheduling (priority) of the process
SCHED = { NICE value; FIFO value }

Daemon flag – Process must not end
DAEMON = { YES, NO }

Condition to end rule and move to next rule, wait for one of the following:

NONE - No monitor on the result, just spawn application and continue.
FILE filename - The existence of a file
EXIT status - The application exited with status. Other statuses are considered failure
NETDEVICE netdev - The existence of a networking device
IPC_OWNER owner - The existence of an IPC destination point
PROCESS_READY – The process sent a READY event though PCD API.
WAIT msecs - Delay, ignore END_COND_TIMEOUT

END_COND = { NONE; FILE filename; EXIT status; NETDEVICE netdev; IPC_OWNER owner; WAIT msecs;
PROCESS_READY }

Timeout for end condition. Fail if timeout expires. -1 if not relevant.
END_COND_TIMEOUT = msecs

Action upon failure, do one of the following actions upon failure
NONE – Do not take any action
REBOOT - Reboot the system
RESTART - Restart the rule
EXEC_RULE id - Execute a rule

FAILURE_ACTION = { NONE, REBOOT, RESTART, EXEC_RULE id }

Rule is Active or not (To be activated later by PCD API)
ACTIVE = { YES, NO }
################### End of a rule block #############################

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 9

5.2. Configuration Implementation

5.2.1. Data Storage
The rules data is stored by the Rules database module.

5.2.2. Parsing
The rules files will be parsed by a simple parser which will go through the configuration file and
initialize the rules objects.

There is no error recovery. Each syntax error will be treated as fatal error and a log message will be
displayed. The parsing process will be halted.

5.2.3. Offline Parsing
The PCD will provide an offline parser which will run on the host machine.
It will be used for syntax checking on the configuration file, prior to downloading it to the target.

The offline parser will reuse the parser module as is, and provide a different main function to interface
with the user.

Usage: pcdparser [options]
Options:

-f FILE, --file=FILE Specify PCD rules file.
-g FILE, --graph=FILE Generate a graph file.
-d [0|1|2], --display=[0|1|2] Items to display in graph file
 (Active|All|Inactive).
-o FILE, --output=FILE Generate an output header file with rules
 definitions.
-b DIR, --base-dir=DIR Specify base directory on the host.
-v, --verbose Print parsed configuration.
-h, --help Print this message and exit.

5.2.3.1. Header file generation
The pcdparser will be able to generate header files which define macros with all the component’s
rule names. The generated names can be used by any application which wants to communicate
and interact with the PCD.

5.2.3.2. Graph file generation
The pcdparser will be able to generate graph files which graphically describe each rule in the
system with its dependencies. The resulted graph will be a tree, which will present the flow of the
system boot sequence.

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 10

6. Process Control Daemon Core

6.1. Initialization
The PCD will be started by the system initialization script (rcS). The PCD will install a signal handler which
will reboot the system In case the PCD is terminated for any reason.

6.1.1. Command line Parameters
-f FILE, --file=FILE : Specify PCD rules file.
-p, --print : Print parsed configuration.
-v, --verbose : Verbose display.
-t tick, --timer-tick=t : Setup timer ticks in ms (default 20ms).
-e FILE, --errlog=FILE : Specify error log file (in nvram)
-d, --debug : Debug mode
-h, --help : Print usage screen

6.1.1.1. File
Specifies the top level PCD script file, which contains the required rules.

6.1.1.2. Print
Print all the parsed rules on the console (not required)

6.1.1.3. Verbose
Have PCD report all events and failures

6.1.1.4. Tick
Specify the default tick. If not specified, the value is 20ms.

6.1.1.5. Error log
Specify a filename which will log all the errors in a non-volatile memory storage.
This is helpful when need to debug a crash offline.

6.1.1.6. Debug
In case a crash has occurred and a system reboot was requested as a recovery action, the PCD
will not reboot the system, but leave it as is. This is helpful when need to debug a crash on the
spot, where the developer can extract more information from the device.

6.1.2. Scheduling
The PCD’s priority is set by default to FIFO 1.

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 11

6.2. Parser module
The PCD will have a module which will parse the rules files. The parser will go through the configuration
file and initialize the rules objects using the rules database module.
There is no error recovery. Each syntax error will be treated as fatal error and a log message will be
displayed. The parsing process will be halted, and the PCD will exit.

6.3. Rules database module
The Rules database module stores all the rules which are configured to the PCD by the parser module.

6.3.1. Rule object
Each object includes the following fields:

- Rule ID (as an object of component string and an integer)
- Start condition and its value
- End condition and its value
- End condition timeout
- Command (as a string)
- Parameters (as a string)
- Optional parameters
- Failure action
- Scheduling
- Rule state
- Daemon flag
- Indexed flag
- A pointer to the associated active process
- A pointer to the next object

6.3.2. Rule states
Each rule will have one of the following states:
PCD_API_RULE_IDLE: Rule is idle, never been run
PCD_API_RULE_RUNNING: Rule is running; waiting for start or end condition
PCD_API_RULE_COMPLETED_PROCESS_RUNNING: Rule completed successfully, process is
running (daemon)
PCD_API_RULE_COMPLETED_PROCESS_EXITED: Rule completed successfully, process exited
PCD_API_RULE_NOT_COMPLETED: Rule failed due to timeout, failure in end condition
PCD_API_RULE_FAILED: Rule failed due to process unexpected failure

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 12

6.3.3. Rules Database storage
The rules will be stored in a sorted linked list of rule objects, for each Rule group. A rule group is
defined by the Rule Prefix name (i.e. SYSTEM), in order to maximize the search performance. The
objects are sorted by group identifier and name identifier.

6.4. Timer service module
The PCD will have a Timer service module which will provide API to enqueue and dequeue rules to/from
the timer queue. Timer ticks will be in 20ms periods, with an option to change the interval from command
line. The Timer module will use the Condition check module for each rule, where queued rules will be
checked by it and handled upon timeout (failure action) by the Failure action module.
Upon a successful completion of a Start condition, the process associated with the rule will be scheduled
for spawning by the Process module.
Rules which were satisfied (successful completion of their End condition) will be removed from the timer
queue.

Group 1 Group 2 Group n

Rule 1

Rule 2

Rule n

Rule 1

Rule 2

Rule n

Rule 1

Rule 2

Rule n

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 13

6.4.1. Timer service data structure
The Timer module maintains a linked list of timer objects, which contain the active rules.
The object holds the following information:

- A pointer to the associated rule
- A pointer to the rule's start condition function
- A pointer to the rule's end condition function
- A pointer to the rule's failure action function
- Time variable to hold the remaining time for the rule's timeout.

Rules Database

Timer
Object 1

Rule

Condition Check

Failure Action

Rule Rule

Function 1
Function 2
Function 3
Function 4

Function n

Function 1
Function 2
Function 3
Function 4

Function n

Function 1
Function 2
Function 3
Function 4

Function n

Timer
Object 2

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 14

6.5. Condition Check module
The PCD will have a condition check module which will implement all the available start conditions checks
and end condition checks. The module will use the native Linux API and the Proprietary TI libraries to get
the required information. The condition check module will be used by the Timer module, and it will inform
the Timer module if the condition check was successful or not.

The following start conditions are supported:

� NONE - No start condition, application is spawn immediately
� FILE filename - The existence of a file
� RULE_COMPLETED id - Rule id completed successfully
� NET_DEVICE netdev - The existence of a networking device
� IPC_OWNER owner - The existence of an IPC destination point
� ENV_VAR name,value - Value of a variable

The following end conditions are supported:

� NONE - No end condition
� FILE filename - The existence of a file
� EXIT status - The application exited with status. Other statuses are considered failure
� PROCESS_READY – The process sent a READY event though PCD API.
� WAIT msecs - Delay, ignore END_COND_TIMEOUT
� NET_DEVICE netdev - The existence of a networking device
� IPC_OWNER owner - The existence of an IPC destination point

6.6. Failure action module
The PCD will have a Failure action module which will implement all the supported actions which are
required in case a process exited or stopped unexpectedly.

The following Failure actions are supported:

� NONE – Take no action
� REBOOT - Reboot the system
� RESTART - Restart the rule
� EXEC_RULE id - Execute a rule

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 15

6.7. Process module
The PCD will have a Process module which will start, stop, and monitor the started processes. The
Process module will handle the events coming from the processes it spawns (e.g. the process was
stopped, the process exited). In this case, the PCD will activate the failure action of the rule associated
with the process, if required.
The Process module will provide an API to Enqueue rules which their associated processes are required
to be started, as well as API to Terminate, Kill and send signals to the processes it spawned.

6.7.1. Process state
A managed process will have one of the following states:
NOTHING – Null state.
RUNME – A command to run the process is pending.
STARTING – The process is starting to run
RUNNING – The process is currently running
TERMME – A command to terminate the process is pending.
KILLME – A command to kill the process is pending.
STOPPED – The process has stopped.

6.7.2. Process exit state
A managed process will have one of the following exit states:
NOTHING – Null state (The process did not exit).
EXITED – The process has exited
SIGNALED – The process exited due to a signal
STOPPED – The process has stopped due to an error

6.7.3. Process module data structure
The Process module maintains a linked list of process objects which are associated with active
(running) processes.
Each object holds the following information:

- A pointer to the associated rule
- Process state – One of the states listed above.
- Process exit state – One of the exit states listed above.
- Process ID.
- Process return code
- Signal flag – The process module has signaled the process.

6.7.4. Process module start and stop iterations
The process module will have two iteration functions which will be activated by the main process in 2
seconds ticks:

- Start iteration:
The start iteration will spawn all pending to run objects (in RUNME state), and change
the process state to RUNNING after it verified that a started process in STARTING
state did not crash immediately.

- End iteration:
The end iteration will handle pending terminate or kill requests, as well as handle all
cases process exits due to all mentioned reasons.

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 16

6.7.5. Process Parameters

6.7.5.1. Static Parameters
Static parameters are specified in the Rules configuration file. Static parameters are used by
default when a process is started.

6.7.5.2. Dynamic Parameters
Dynamic parameters may be specified by any process linked with the PCD API, which requires
starting another process with parameters which are different than the parameters defined in the
Rule configuration file.

6.7.5.3. Environment Variable Parameters
The PCD supports environment variable parameters, which are defined in the Linux environment,
outside of the scope of the PCD. Such parameters can be either defined in the configuration file or
using the dynamic parameters approach, and marked by a dollar-sign ($) prefix, similarly to the
usage in a Linux shell.

6.8. Exception module
The PCD will have an Exception module which will handle application crashes and exceptions. The PCD
will assign a socket which will be used to transfer the crash data. Each application will be able to register
to default exception handlers which will gather all the crash information and send it to the dedicated
socket.

6.9. Error logger module
The PCD will have an Error logger module which will log all error messages in a non-volatile storage. This
will be useful for post-mortem analysis.

6.10. PCD API module
The PCD API module will create an ICC destination point for incoming messages (through ICC). The PCD
API module accepts various messages, and replies with the status of the request. The PCD API module
will not be running in a different thread, but it will sequentially check for messages in a non-blocking
fashion.

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 17

7. PCD API
The API will be available as a shared library. Each API encapsulates an IPC message to a well know PCD
destination point. Each call, except a dedicated process termination API, is blocking, only for the case of
immediate error, where an error return value will be returned to the caller.

A calling process can either specify its destination point for reply, or specify -1, in case it doesn't require a
reply.

The following API is supported by the PCD:

- Start a process associated with rule: Accepts Rule ID and optional dynamic
parameters (May be NULL to use static parameters).

- Terminate a process associated with rule: Accepts Rule ID.
- Kill a process associated with rule: Accepts Rule ID.
- Send a PROCESS_READY event.
- Get a state of rule (for synchronization)
- Register to the PCD’s default exception handlers
- Reboot the system with log

PCD

API
Modul

e

Process

Process

Process

Process

IPC Messages

Perform Action

Request
Action

Request
Action

Request
Action

Request
Action

API
Library

API
Library

API
Library

API
Library

OK/
NOK

OK/
NOK

OK/
NOK

OK/
NOK

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 18

8. System description

PARSER

MAIN

RULES

DB

Textual
configuration
file with rules

Activate
Rules

Parse
Rules File

Add Rule Rule Info

Activate /
Stop

TIMER

FAILURE
ACTION

PROCESS COND
CHECK

Activate
failure
action

Activate
Rule

Tick

Check
Condition

OK / NOK Enqueue
Process

Enqueue
Rule

Iterate

OK/Fail

OK/Fail

Process

Spawn /
Signal /
Monitor

Stopped /
Signaled /

Exited

PCD API

IPC

Check
Messages

Enqueue /
Dequeue

Rule

Application

EXCEPT

Crashed

Activate failure action

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 19

9. Use cases

9.1. Creating a process
Creating a process is done by adding a new Rule in the Rules configuration file.
The rule could be in the state of:

- Active: The PCD will start handling the process associated with the rule immediately.
- Inactive: The PCD will start handling the process associated with the rule only upon

request, using the PCD API. An inactive rule does not require CPU cycles.

9.2. Creating a Daemon process
Creating a Daemon process is done in the same way as mentioned in section 10.1. In order to specify that
the process is a Daemon, there is a special DAEMON keyword, which should be marked as YES. If a rule
is marked as Daemon, the PCD will consider any process exit (due to any reason, normal exit, process
segmentation fault or signal) as a failure, and will trigger the configured failure/recovery action, which
could be either reboot, restart the process, start another rule or do nothing.

9.3. Creating a process with a specified priority
The PCD can be configured to spawn process with a specified priority. The user can select from either to
priority schemes:

- NICE: A normal process priority, which varies from 19 (lowest) to -20 (highest).
- FIFO: A high process priority, which varies from 1 (lowest) to 99 (highest). Note that 1

is higher priority than NICE -20 value.

9.4. Creating dependency between processes
Creating dependency between 2 or more processes is done using the start and end conditions of each
rule. A process which requires a resource which is created by another process can specify the resource in
its start condition. Another approach is that the process which creates the resource can specify the
resource in its end condition and the depended process can wait for the completion of this specific rule.

9.5. Creating a process in a runtime configurable fashion
Creating a process in a runtime configurable fashion could be done by specifying an inactive rule, and
activate it upon a logic which decides whether to activate it or not.

9.6. Creating numerous processes of the same executable in a
runtime configurable fashion

Each copy of a process in the system requires a defined rule. In case of numerous copies of the same
executable are required to run, a rule per each copy is required, because a rule is associated to a single
process. The logic of how many rules to activate is done by the user.

9.7. Synchronizing processes
Process synchronization is similar to process dependency. Adding to section 10.4, each process can send
a "ready event" to the PCD to specify that it is ready to accept client requests or its resources are
available. It is up to the programmer to decide where and when to install this event.

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 20

9.8. Monitoring Processes Resource creation and timeout
The PCD can be configured to monitor for a process resource creation in order to determine if the rule
succeeded or not. When a process's job is to create a resource (e.g. file), the resource can be specified in
the rule's end condition. In case the rule contains timeout for the resource creation and the timeout
expired, the PCD can be configured to trigger a failure or recovery action.

9.9. Monitoring Processes and recover from failure
The PCD monitors all the processes it spawns. Per each rule, it is specified whether the process is a
daemon or not. In case the process associated with the rule is defined as a daemon, the PCD will
consider any process exit (due to any reason, normal exit, process segmentation fault or signal) as a
failure, and will trigger the configured failure/recovery action, which could be either reboot, restart the
process, start another rule or do nothing.
In case a non-daemon process has exited abnormally (exit status not equal to 0, segmentation fault) a
failure/recovery action will be activated.

 TEXAS INSTRUMENTS Process Control Daemon
 Software High-Level Design Document
 Revision 0.3

0.3

 21

10. Unit tests

The following list of tests will be done to ensure the functionality and robustness of the PCD.

10.1. Parser module test
� Test a variety of configuration files and validate that the rules objects are initialized properly
� Test faulty configuration files and validate that an error message is displayed.

10.2. Rules DB module test
� Test and validate Rule Enqueue API
� Test and validate Rule Search API

10.3. Condition Check module test
� Test and validate that start conditions are checked correctly.
� Test and validate that end conditions are checked correctly.

10.4. Failure action module test
� Test and validate that the various failure action are done correctly.

10.5. Timer module test
� Test Enqueue / dequeue APIs.
� Test execution of Failure action upon timeout.

10.6. Process module test
���� Test Enqueue / dequeue APIs.
���� Test starting of a process with parameters
���� Test killing a process
���� Test terminating a process
���� Test that the module monitors correctly a process and handles signals correctly
���� Kill a daemon process and make sure the failure action is triggered.

10.7. API test
� Start a process
� Start a process with dynamic parameters
� Terminate a process
� Kill a process
� Send PROCESS_READY event

